New insights into chitosan-DNA interactions using isothermal titration microcalorimetry.

نویسندگان

  • Pei Lian Ma
  • Marc Lavertu
  • Françoise M Winnik
  • Michael D Buschmann
چکیده

The interaction of chitosan with plasmid DNA was investigated as a function of pH, buffer composition, degree of deacetylation (DDA), and molecular weight (M(n)) of chitosan, using isothermal titration microcalorimetry (ITC). The Single Set of Identical Sites model was used to obtain the enthalpy of interaction, the binding constant, and the stoichiometry of binding. The chitosan-DNA interaction was shown to be coupled with proton transfer from the buffer to chitosan, as revealed by the dependence of the measured heat release on the ionization enthalpy of the buffer. The measured enthalpy of binding was almost entirely due to proton transfer, because it was accounted for by the enthalpy of ionization of the buffer and of chitosan once the number of protons transferred was calculated. This proton transfer during binding resulted in the protonation of an additional 17, 37, and 58% of total glucosamine units at pH 5.5, 6.5, and 7.4, respectively. The strong polyanionic nature of DNA facilitates the ionization of glucosamines of chitosan upon complexation and is responsible for proton transfer. Interestingly, using the chitosan-DNA stoichiometry provided by ITC and the calculated degree of ionization of chitosan in the complex, the charge ratio of protonated amines to negative phosphate groups in the complex was nearly constant at 0.50-0.75 after saturation and was independent of the pH, buffer type and chitosan molecular characteristics. The chitosan-DNA binding constant was in the range of 10(9)-10(10) M(-1). The binding constant was pH-dependent and was greater at lower pH due to increased electrostatic attraction to DNA when chitosan is highly charged. Furthermore, the DDA and molecular weight of chitosan exerted a great influence on binding affinity which increased by almost an order of magnitude with an increase of the latter from 7 to 153 kDa. The binding affinity did not change significantly with DDA from 72 to 80% when the M(n) was kept constant near 80 kDa, but it increased substantially with DDA from 80 to 93% to reach a value similar to that obtained with chitosan of M(n) = 153 kDa and 80% DDA. These results provide insight into the previously reported dependence of the transfection efficiency of DNA/chitosan complexes on chitosan DDA and molecular weight, where complex stability and chitosan-DNA binding strength play a critical role.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermodynamic of Interaction between Some Water-Soluble Porphyrins and DNA by Titration Microcalorimetry

In the present work, the interaction of three water soluble porphyrins, tetra (p-trimethyle) ammoniumphenyl porphyrin iodide (TAPP) as a cationic porphyrin, tetra sodium meso-tetrakis (p-sulphonatophenyle) porphyrin (TSPP) as an anionic porphyrin and manganese tetrakis (p-sulphonato phenyl)porphinato acetate (MnTSPP) as a metal porphyrin, with DNA have been studied by isothermaltitration microc...

متن کامل

Insights on the interactions of chitosan with phospholipid vesicles. Part I: Effect of polymer deprotonation.

Interactions between the polysaccharide chitosan and negatively charged phospholipid liposomes were studied as a function of compositional and environmental conditions. Using isothermal titration calorimetry, different levels of deprotonation of chitosan in acidic solutions were attained with titration of the fully protonated polymer at pH 4.48 into solutions with increasing pH. The process was...

متن کامل

Isothermal Microcalorimetry to Investigate Non Specific Interactions in Biophysical Chemistry

Isothermal titration microcalorimetry (ITC) is mostly used to investigate the thermodynamics of "specific" host-guest interactions in biology as well as in supramolecular chemistry. The aim of this review is to demonstrate that ITC can also provide useful information about non-specific interactions, like electrostatic or hydrophobic interactions. More attention will be given in the use of ITC t...

متن کامل

Standards in Isothermal Microcalorimetry

The main calorimetric principles used in isothermal microcalorimetry are briefly discussed. Different chemical calibration and test reactions are discussed, with a focus on reactions suitable for ambient conditions: reactions initiated by mixing of liquids (including titration microcalorimetry), dissolution of solid compounds and of slightly soluble gases, a photochemical process, and thermal p...

متن کامل

Inhibition study of adenosine deaminase by caffeine using spectroscopy and isothermal titration calorimetry.

Kinetic and thermodynamic studies were made on the effect of caffeine on the activity of adenosine deaminase in 50 mM sodium phosphate buffer, pH 7.5, using UV spectrophotometry and isothermal titration calorimetry (ITC). An uncompetitive inhibition was observed for caffeine. A graphical fitting method was used for determination of binding constant and enthalpy of inhibitor binding by using iso...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomacromolecules

دوره 10 6  شماره 

صفحات  -

تاریخ انتشار 2009